

1

Installing Automic Automation Kubernetes Edition v21

How to deploy to AWS

Version 1.1

Installing Automic Automation Kubernetes Edition v21 How to deploy to AWS

2

Broadcom, the pulse logo, and Connecting everything are among the trademarks of Broadcom and/or its affiliates in the
United States, certain other countries, and/or the EU.

Copyright © 2021 by Broadcom. All Rights Reserved.

The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. For more information, please visit
www.broadcom.com.

Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability,
function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does
not assume any liability arising out of the application or use of this information, nor the application or use of any product or
circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

http://www.broadcom.com/

Installing Automic Automation Kubernetes Edition v21 How to deploy to AWS

3

Contents

Chapter 1: Introduction .. 4

Chapter 2: Create the PostgreSQL Database for Automic .. 5

Chapter 3: Create the Secrets .. 6
3.1 Automic ImagePullSecret used to retrieve the images from GCR ... 6
3.2 DB secret with the connection information .. 6
3.3 Client 0 secret with pre-set credentials .. 6

Chapter 4: Install the AWS Load Balancer Controller ... 7

Chapter 5: Deploy AAKE in the EKS Cluster .. 8
5.1 Download the AAKE zip package and install the Automic Helm Plugin and Helm chart 8
5.2 Adapt the resources for awi, jwp, jcp-ws and jcp-rest in values.yaml .. 8
5.3 Configure the AWS CLI to connect to the cluster via command line .. 8
5.4 Install AAKE using Helm .. 8

Chapter 6: Configure TLS certificates in AWS Certificate Manager ... 10

Chapter 7: Expose the Cluster to the outside world .. 11

Chapter 8: Connect agents via HTTPS Load Balancer .. 14
8.1 Install the Automic Proxy ... 14
8.2 Connect TLS-enabled agents to the Proxy Server .. 15
8.3 Connect non-TLS agents via the TLS Gateway and Proxy Server ... 16

Installing Automic Automation Kubernetes Edition v21 How to deploy to AWS

4

Chapter 1: Introduction

The Elastic Kubernetes Service (EKS) offered on AWS can be used to deploy and manage the Automic Automation
Kubernetes Edition.

If you are new to AWS and Kubernetes, the EKS user guide can provide you with all the information you need, from
installing and configuring the AWS CLI to the steps required to set up Fargate for your cluster. AWS provide a tutorial:
Creating a VPC with Public and Private Subnets for Your Clusters to help with the correct network setup before creating
the cluster.

Correctly configuring the IAM roles and policies can be a challenge. Still, there is plenty of documentation for this, and
especially when using Fargate, don’t forget to include the Core DNS pods and remove the ec2 annotations.

To expose the cluster to the outside world, you can deploy the AWS Load Balancer Controller to automatically create an
application or network load balancer bound to Kubernetes services or Ingresses in the cluster.

AWS prerequisites at a glance:

 VPC with public and private subnetworks for Fargate

 EKS cluster with Fargate profiles (AAKE pods can use the default namespace)

 PostgreSQL RDS database instance

 AWS Load Balancer Controller

Be aware, this document does not replace the Automic documentation or a basic understanding of Kubernetes concepts
and other Cloud relevant components, such as Load Balancers.

The following is only an example of how to deploy AAKE on EKS. There are multiple options with the many services AWS
provides, some of which might better fit your needs. In the scenario described in this guide, there is no need for CPs since
all agents can connect to the new JCPs by taking advantage of the TLS Gateway. If using strict Firewall rules between
security zones that only allow outgoing connections, the Automic Proxy pair can establish connections between the AAKE
cluster and other components. An overview can be found in the diagram below.

https://docs.aws.amazon.com/eks/latest/userguide/what-is-eks.html
https://docs.aws.amazon.com/AmazonECS/latest/userguide/create-public-private-vpc.html
https://docs.aws.amazon.com/eks/latest/userguide/fargate-getting-started.html
https://docs.aws.amazon.com/eks/latest/userguide/alb-ingress.html

Installing Automic Automation Kubernetes Edition v21 How to deploy to AWS

5

Chapter 2: Create the PostgreSQL Database for Automic

There are some mandatory settings to optimize the database and connections for the Automic Server.

You will need to create a new parameter group and set vacuum_cost_limit to 10000 and client_encoding to LATIN9.

You can do this during the creation of the database instance or by modifying the configuration afterwards.

Once the instance is available, you can connect to it and create a new database:

$ psql --host=automic-db.id.eu-central-1.rds.amazonaws.com --port=5432 \

 --username=oab --password --dbname=postgres

 postgres=> CREATE DATABASE ae WITH OWNER = "oab" TEMPLATE = template0 ENCODING =

'UTF8' LC_COLLATE = 'C' LC_CTYPE = 'C' CONNECTION LIMIT = -1;

 postgres=> \c ae

 ae=> CREATE SCHEMA dbo AUTHORIZATION "oab";

 ae=> ALTER ROLE "oab" IN DATABASE ae SET search_path TO 'dbo';

Note: No additional tablespaces were created in this example, so the PostgreSQL default of pg_default will be used.

Installing Automic Automation Kubernetes Edition v21 How to deploy to AWS

6

Chapter 3: Create the Secrets

Sensitive information relevant to the Automic system is stored in secrets and retrieved during deployment. You must
download a json file that stores the credentials required to pull the container images from the Automic Downloads Page.

3.1 Automic ImagePullSecret used to retrieve the images from GCR

$ kubectl create secret docker-registry automic-image-pull-secret \

 --docker-server=gcr.io \

 --docker-username=_json_key \

 --docker-password="$(cat ./automic-image-pull-secret.json)" \

 --docker-email=broadcom-com@esd-automic-saas.iam.gserviceaccount.com

3.2 DB secret with the connection information

$ kubectl create secret generic ae-db \ --from-literal=host=automic-db.id.eu-

central-1.rds.amazonaws.com \ --from-literal=vendor=postgres --from-

literal=port='5432' --from-literal=user=oab \ --from-literal=db=ae --from-

literal=password=automic \ --from-literal=data-tablespace-name=pg_default \ --from-

literal=index-tablespace-name=pg_default

\--from-literal=additional-parameters="connect_timeout=10 client_encoding=LATIN9"

3.3 Client 0 secret with pre-set credentials

$ kubectl create secret generic client0-user --from-literal=client='0' \ --from-

literal=user=ADMIN --from-literal=department=ADMIN --from-literal=password=admin

https://downloads.automic.com/downloads
mailto:broadcom-com@esd-automic-saas.iam.gserviceaccount.com

Installing Automic Automation Kubernetes Edition v21 How to deploy to AWS

7

Chapter 4: Install the AWS Load Balancer Controller

In this guide, the AWS Load Balancer Controller automatically provides Application Load Balancers when Ingress objects
are created. You can find detailed instructions in the Amazon EKS User Guide.

You need to set the region and vpcid explicity to use the Controller with Fargate.

$ helm upgrade -i aws-load-balancer-controller eks/aws-load-balancer-controller \

 --set clusterName=oab-aake-v21 \

 --set serviceAccount.create=false \

 --set serviceAccount.name=automic-aws-load-balancer-controller \

 --set region=eu-central-1 \

 --set vpcId=<your vpc id> \

 -n kube-system

https://docs.aws.amazon.com/eks/latest/userguide/aws-load-balancer-controller.html

Installing Automic Automation Kubernetes Edition v21 How to deploy to AWS

8

Chapter 5: Deploy AAKE in the EKS Cluster

The AAKE zip package that can be downloaded from https://downloads.automic.com contains a Helm Plugin mainly used

to check the status of the installation and a Helm chart with the values.yaml file as the entry point for the configuration.

5.1 Download the AAKE zip package and install the Automic Helm
Plugin and Helm chart

$ tar xvf automic-automation-plugin-1.0.0.tgz

$ helm plugin install automic-automation-plugin

$ tar xvf automic-automation-1.0.0.tgz

$ cp automic-automation/values.yaml values.yaml

5.2 Adapt the resources for awi, jwp, jcp-ws and jcp-rest in
values.yaml

Fargate creates nodes as needed during deployment; some pods might require more resources than allocated by default.

Setting values for resource requests and limits ensures that the nodes are sized according to the pods' needs.

jwp:

 # resources used for pods of deployment: requests and limits, recommended memory

range = 700MB-2GB

 resources:

 requests:

 memory: "700Mi"

 cpu: "250m"

 limits:

 memory: "2Gi"

 cpu: "500m"

5.3 Configure the AWS CLI to connect to the cluster via command
line

$ aws eks update-kubeconfig --region eu-central-1 --name oab-aake-v21

5.4 Install AAKE using Helm

$ helm install aake automic-automation-1.0.0.tgz -f values.yaml

The Fargate nodes are created on demand during the deployment as visualized below:

Installing Automic Automation Kubernetes Edition v21 How to deploy to AWS

9

On the Workloads page it is possible to view the Automic deployments with the configured replicaset

The Automic Helm plugin can be used to check the status of the installation:

$ helm automic-automation status

Installing Automic Automation Kubernetes Edition v21 How to deploy to AWS

10

Chapter 6: Configure TLS certificates in AWS Certificate
Manager

To connect TLS-enabled agents/Proxy to the AAKE cluster valid certificates must be in place. The TLS handshake is
performed between the agent/Proxy Client and the HTTPS Load Balancer and there is no need to additionally configure
the JCP as is the case for on-prem installations.

The AWS Certificate Manager allows you to request a new certificate, but it is also possible to import an existing private
key and certificate, as is the case in this guide.

Ensure to include the domains of all the HTTPS Load Balancers in the certificate if you don’t use a wildcard domain;
otherwise, the agents will not connect because of the TLS hostname verification.

Installing Automic Automation Kubernetes Edition v21 How to deploy to AWS

11

Chapter 7: Expose the Cluster to the outside world

To access the AWI and for TLS agents/Gateway to connect to the JCP, you have to expose the cluster services via
Ingresses and HTTP(S) Load Balancers.

The domains/endpoints for the HTTP(S) Load Balancers are configured as hosts in the Ingresses, and the TLS certificate
is referenced via the AWS Certificate Manager ARN.

With Fargate, it’s only possible to use IP targets to register pods as targets for Load Balancers.

The Ingress configuration to access AWI, JCP-REST and JCP-WS via 3 HTTP(S) Load Balancers could look as below:

apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

 name: aake-awi

 annotations:

 kubernetes.io/ingress.class: alb

 alb.ingress.kubernetes.io/target-type: ip

 alb.ingress.kubernetes.io/scheme: internet-facing

 alb.ingress.kubernetes.io/listen-ports: '[{"HTTPS":443}, {"HTTP":80}]'

spec:

 rules:

 - host: <your awi domain name>

 http:

 paths:

 - path: /*

 backend:

 serviceName: awi

 servicePort: awi

apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

 name: aake-rest

 annotations:

 kubernetes.io/ingress.class: alb

 alb.ingress.kubernetes.io/target-type: ip

 alb.ingress.kubernetes.io/scheme: internet-facing

 alb.ingress.kubernetes.io/listen-ports: '[{"HTTPS":443}, {"HTTP":8088},

{"HTTP": 80}]'

spec:

 rules:

 - host: <your jcp rest domain name>

 http:

 paths:

 - path: /*

 backend:

 serviceName: jcp-rest

 servicePort: rest

apiVersion: networking.k8s.io/v1beta1

Installing Automic Automation Kubernetes Edition v21 How to deploy to AWS

12

kind: Ingress

metadata:

 name: aake-ws

 annotations:

 kubernetes.io/ingress.class: alb

 alb.ingress.kubernetes.io/target-type: ip

 alb.ingress.kubernetes.io/scheme: internet-facing

 alb.ingress.kubernetes.io/listen-ports: '[{"HTTPS": 443}, {"HTTPS":8443}]'

 alb.ingress.kubernetes.io/backend-protocol: HTTPS

 alb.ingress.kubernetes.io/certificate-arn: arn:aws:acm:eu-central-

1:564875751664:certificate/b4ae0dfe-baf6-4939-b0c2-736e33823500

spec:

 rules:

 - host: <your jcp ws domain name>

 http:

 paths:

 - path: /*

 backend:

 serviceName: jcp-ws

 servicePort: ws

When AWI is used with Load Balancers, sticky sessions are required and they can be configured by editing the EC2
Target Group for AWI:

Installing Automic Automation Kubernetes Edition v21 How to deploy to AWS

13

After the Ingresses have been successfully deployed and Load Balancers created, AWI can be reached via the exposed
endpoint
https://<your awi domain name>.

Additionally, the WS and REST JCP endpoints need to be configured in UC_SYSTEM_SETTINGS to also point to the
Load Balancer domains.

If you already have domains assigned to the Load Balancer(s), you can also configure the endpoints as environment

variables in values.yaml.

environment defines variables that will be stored in the configmap aa-properties

and injected as ENV into the containers

environment:

 JCP_WS_EXTERNAL_ENDPOINT: "https://<your jcp ws domain name>"

 JCP_REST_EXTERNAL_ENDPOINT: "https://<your jcp rest domain name>"

https://k8s-default-aakeawi-4d50252fd5-147349151.eu-central-1.elb.amazonaws.com/

Installing Automic Automation Kubernetes Edition v21 How to deploy to AWS

14

Chapter 8: Connect agents via HTTPS Load Balancer

8.1 Install the Automic Proxy

You can follow the steps in the Automic documentation to install the 2 Proxy components
https://docs.automic.com/documentation/webhelp/english/AA/21.0/DOCU/21.0/Automic%20Automati
on%20Guides/Content/Proxy/installation_proxy.htm?Highlight=proxy.

The Proxy Client will connect to the JCPs via the Ingress/HTTPS Load Balancer, while the Proxy
Server can accept connections from the TLS Gateway and TLS-enabled agents.

The Ingress/Load Balancer(s) server certificate that is configured in AWS Certificate Manager needs
to be trusted by the Proxy Client.

If you use a self-signed certificate or one signed by an internal CA, you can import this into the Java
truststore of the JRE used to start the Proxy Client.

A self-signed certificate has to be generated before starting the Proxy Server as it works with a Java
keystore. Self-signed certificate can be exported from the keystore with KeyStore Explorer or a similar
tool.

For the Proxy Server certificate to be trusted by the Proxy Client, it will be imported in the Java cacerts via the KeyStore
Explorer (running as administrator might be required), the same as for the HTTPS Load Balancer certificate.

https://docs.automic.com/documentation/webhelp/english/AA/21.0/DOCU/21.0/Automic%20Automation%20Guides/Content/Proxy/installation_proxy.htm?Highlight=proxy
https://docs.automic.com/documentation/webhelp/english/AA/21.0/DOCU/21.0/Automic%20Automation%20Guides/Content/Proxy/installation_proxy.htm?Highlight=proxy
https://docs.automic.com/documentation/webhelp/english/AA/21.0/DOCU/21.0/Automic%20Automation%20Guides/Content/Proxy/installation_proxy.htm?Highlight=proxy

Installing Automic Automation Kubernetes Edition v21 How to deploy to AWS

15

Proxy Client ini file can then be configured as below:

[GLOBAL]

;

name=PROXY01

;

system=AUTOMIC

;

serverProxy=<your server proxy hostname or address>:4321

;

routingPort=8445

...

[TCP/IP]

;

; connection: Connection Parameter: Address of the endpoint used to connect to the

AE system.

; Allowed formats:

; DNS Name:Port number

; TCP/IP Address:Port number

;

connection=<your jcp ws domain name>:8443

8.2 Connect TLS-enabled agents to the Proxy Server

The agents connecting to the Proxy Server need to trust its self-signed certificate, either by importing the Proxy Server
certificate in the Java or OS truststore on the host where the agent runs or copying it to a folder accessible to the agent.

If the certificate is imported into the Java/OS truststore where the agent/TLS Gateway are installed, the ini file of the v21
Windows agent and TLS Gateway only require the Automic system name and hostname/address of the Proxy Server:

UCXJWX6.ini:

[GLOBAL]

;

name=WINTLS01

;

system=AUTOMIC

 ...

Installing Automic Automation Kubernetes Edition v21 How to deploy to AWS

16

[TCP/IP]

;

connection=<your server proxy hostname or address>:8445

ucxjsqlx.ini:

[GLOBAL]

;

name=SQLTLS01

;

system=AUTOMIC

…

[TCP/IP]

;

connection=<your server proxy hostname or address>:8445

8.3 Connect non-TLS agents via the TLS Gateway and Proxy Server

To use the TLS Gateway in CP mode, the TLS_GATEWAY_CP key in the UC_SYSTEM_SETTINGS variable must be set
to Yes, and the cp_port ini parameter has to be configured. The Gateway must trust the Proxy Server certificate, same as
for the TLS-enabled agents. The required parameter in the ini file of the Gateway can be configured as below:

uctlsgtw.ini:

[GLOBAL]

;

name=TLSGTW01

;

system=AUTOMIC

…

[TCP/IP]

;

connection=<your server proxy hostname or address>:8445

…

cp_port=2217

The v12.3 agents can use the same system name and the cp parameter has to match the hostname/address of the

machine where the TLS Gateway is installed and also the same port configured as a cp_port for the Gateway.

UCXJWX6.ini:

[GLOBAL]

;

name=WIN12.3

;

system=AUTOMIC

…

[TCP/IP]

;

cp=<your tls gateway hostname or address>:2217

Installing Automic Automation Kubernetes Edition v21 How to deploy to AWS

17

The Automic Proxy, TLS Gateway and the agents should be visible in AWI

